Unemployment Rate Prediction Using a Hybrid Model of Recurrent Neural Networks and Genetic Algorithms

Author:

Mero Kevin1ORCID,Salgado Nelson2ORCID,Meza Jaime3,Pacheco-Delgado Janeth4ORCID,Ventura Sebastián5ORCID

Affiliation:

1. Department of Computer Systems, Universidad Técnica de Manabí (UTM), Av. José María Urbina y Che Guevara, Portoviejo 130104, Ecuador

2. School of Systems and Computing Engineering, Pontifical Catholic University of Ecuador (PUCE), Av. 12 de Octubre 1076 y Vicente Ramón Roca, Quito 170525, Ecuador

3. Department of Information and Communication Technologies, Universidad Técnica de Manabí (UTM), Av. José María Urbina y Che Guevara, Portoviejo 130104, Ecuador

4. Department of Economics, Universidad Técnica de Manabí (UTM), Av. José María Urbina y Che Guevara, Portoviejo 130104, Ecuador

5. Department of Computer Science and Numerical Analysis, University of Córdoba (UCO), Campus Universitario de Rabanales Ctra. N-IVa, Km. 396, 14071 Córdoba, Spain

Abstract

Unemployment, a significant economic and social challenge, triggers repercussions that affect individual workers and companies, generating a national economic impact. Forecasting the unemployment rate becomes essential for policymakers, allowing them to make short-term estimates, assess economic health, and make informed monetary policy decisions. This paper proposes the innovative GA-LSTM method, which fuses an LSTM neural network with a genetic algorithm to address challenges in unemployment prediction. Effective parameter determination in recurrent neural networks is crucial and a well-known challenge. The research uses the LSTM neural network to overcome complexities and nonlinearities in unemployment predictions, complementing it with a genetic algorithm to optimize the parameters. The central objective is to evaluate recurrent neural network models by comparing them with GA-LSTM to identify the most appropriate model for predicting unemployment in Ecuador using monthly data collected by various organizations. The results demonstrate that the hybrid GA-LSTM model outperforms traditional approaches, such as BiLSTM and GRU, on various performance metrics. This finding suggests that the combination of the predictive power of LSTM with the optimization capacity of the genetic algorithm offers a robust and effective solution to address the complexity of predicting unemployment in Ecuador.

Funder

Universidad Técnica de Manabí

Pontificia Universidad Católica del Ecuador

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3