A New Permutation-Based Method for Ranking and Selecting Group Features in Multiclass Classification

Author:

Zubair Iqbal Muhammad1ORCID,Lee Yung-Seop2,Kim Byunghoon1ORCID

Affiliation:

1. Department of Industrial and Management Engineering, Hanyang University, Ansan 15588, Republic of Korea

2. Department of Statistics, Dongguk University, Seoul 04620, Republic of Korea

Abstract

The selection of group features is a critical aspect in reducing model complexity by choosing the most essential group features, while eliminating the less significant ones. The existing group feature selection methods select a set of important group features, without providing the relative importance of all group features. Moreover, few methods consider the relative importance of group features in the selection process. This study introduces a permutation-based group feature selection approach specifically designed for high-dimensional multiclass datasets. Initially, the least absolute shrinkage and selection operator (lasso) method was applied to eliminate irrelevant individual features within each group feature. Subsequently, the relative importance of the group features was computed using a random-forest-based permutation method. Accordingly, the process selected the highly significant group features. The performance of the proposed method was evaluated using machine learning algorithms and compared with the performance of other approaches, such as group lasso. We used real-world, high-dimensional, multiclass microarray datasets to demonstrate its effectiveness. The results highlighted the capability of the proposed method, which not only selected significant group features but also provided the relative importance and ranking of all group features. Furthermore, the proposed method outperformed the existing method in terms of accuracy and F1 score.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3