Transient Phenomena of Dynamic Contact Angle in Micro Capillary Flows

Author:

Kim Young Bae1,Sung Jaeyong2ORCID

Affiliation:

1. Institute for Advanced Engineering, Gyeonggi 17180, Republic of Korea

2. Department of Mechanical & Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Abstract

This study is devoted to investigating the dynamics of liquid driven by capillary force in a circular tube. A microscope was used to visualize the meniscus movement and the contact angle. The experiments were carried out with glycerin–water mixtures with viscosity ranging from 0.21 to 1.36 Pa∙s by filling the test liquid in a borosilicate glass tube with an inner diameter of 200 μm. The wetting distances of the meniscus with time were compared with the theoretical solution by considering the dynamic variation of contact angle. The results show that the theoretical solution agrees well with experimental data due to the reflection of the actual dynamic contact angle for the transient motions in the developing entrance region. In view of momentum balance, variations of dominant force according to the time were determined by separated inertial periods, such as inertial, inertial-viscous, and viscous time stages.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3