Author:
Al-Ruzouq ,Shanableh ,Yilmaz ,Idris ,Mukherjee ,Khalil ,Gibril
Abstract
: Meeting water demands is a critical pillar for sustaining normal human living standards, industry evolution and agricultural growth. The main obstacles for developing countries in arid regions include unplanned urbanisation and limited water resources. Locating and constructing dams is a strategic priority of countries to preserve and store water. Recent advances in remote sensing, geographic information system (GIS), and machine learning (ML) techniques provide valuable tools for producing a dam site suitability map (DSSM). In this research, a hybrid GIS decision-making technique supported by an ML algorithm was developed to identify the most appropriate location to construct a new dam for Sharjah, one of the major cities in the United Arab Emirates. Nine thematic layers have been considered to prepare the DSSM, including precipitation, drainage stream density, geomorphology, geology, curve number, total dissolved solid elevation, slope and major fracture. The weights of the thematic layers were determined through the analytical hierarchy process supported by several ML techniques, where the best attempted ML technique was the random forest method, with an accuracy of 76%. Precipitation and drainage stream density were the most influential factors affecting the DSSM. The developed DSSM was validated using existing dams across the study area, where the DSSM provides an accuracy of 83% for dams located in the high and moderate zones. Three major sites were identified as suitable locations for constructing new dams in Sharjah. The approach adopted in this study can be applied for any other location globally to identify potential dam construction sites.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献