Physical Experiment and Modeling of the Transport and Deposition of Polydisperse Particles in Stormwater: Effects of a Depth-Dependent Initial Filter Coefficient

Author:

Zou Zhike,Shu Longcang,Min Xing,Chifuniro Mabedi Esther

Abstract

The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of SP in a sand column were investigated under a constant flow condition, for five stormwater concentrations. A depth-dependent initial filter coefficient is incorporated into the conventional filtration model. This modified model considers the heterogeneity of the particle population by lumping the capture of heterogeneous SP into a capture probability. The good agreement between the results of the modified model and the experimental results of measured outlet concentration and average specific deposit validated the modified model. The experiment data and the simulation results both indicate that the highly hyper-exponential retention profiles are caused by non-uniform deposition of heterogeneous SP; and, the conventional model was found to homogenize the spatial distribution of SP retention and overestimate retention of the porous medium. Local and overall permeability reductions were assessed by an empirical relationship and the Kozeny-Carman model, respectively. It is shown that consideration of polydisperse suspended particles is of primary importance. This study highlights the effects of polydisperse particles on SP deposition in a saturated porous medium.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3