Methods for Sample Collection, Storage, and Analysis of Freshwater Phosphorus

Author:

Kianpoor Kalkhajeh Yusef,Jabbarian Amiri BahmanORCID,Huang Biao,Henareh Khalyani Azad,Hu Wenyou,Gao Hongjian,Thompson Michael L.ORCID

Abstract

Although phosphorus (P) is an essential nutrient for biological productivity, it can cause freshwater degradation when present at fairly low concentrations. Monitoring studies using continuous sampling is crucial for documenting P dynamics in freshwater ecosystems and to reduce the risk of eutrophication. Despite literature updates of developments of the analytical methods for measurement of P species in natural waters, there has been no comprehensive review addressing freshwater sample collection, sample preparation, and sample treatment to fractionate and characterize different forms of P. Therefore, this paper aims to elaborate the different techniques for freshwater sampling and to introduce alternative laboratory methods for sample preservation and P fractionation. The advantages and disadvantages of various sampling techniques, including the traditional manual and the recently developed automatic and passive methods, are presented to highlight the importance of collecting representative freshwater samples. Furthermore, we provide suggestions for sample pretreatment, including filtration, transportation, and storage steps to minimize microbial activity and to maximize the accuracy of measurement of various P fractions. Finally, the most common laboratory methods to measure dissolved and particulate as well as the organic and inorganic freshwater P fractions are efficiently provided. Using this guide, a comprehensive monitoring program of P dynamics in freshwater ecosystems can be developed and applied to improve water quality, particularly of P-rich freshwaters.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference171 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3