Affiliation:
1. School of Life Sciences and Facility Management, Institute of Chemistry and Biotechnology, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
Abstract
Modern production processes for biopharmaceuticals often work with very high cell densities. Moreover, there is a trend towards moving from fed-batch to continuous perfusion processes; a development that is influencing the requirements for bioreactor design and process control. In this study, the transfer of fed-batch and perfusion experiments between different cylindrical stirred lab-scale bioreactors and Thermo Scientific’sTM (Waltham, MA, USA) cubical HyPerformaTM DynaDriveTM Single-Use Bioreactor was investigated. Different scaling parameters were used, which were selected based on the requirements of the respective processes. Peak cell densities of up to 49 × 106 cells mL−1 and antibody titers of up to 5.2 g L−1 were achieved in 15- to 16-day fed-batch experiments. In 50-day perfusion cultivations, a viable cell volume of >100 mm3 mL−1 was maintained and more than 1 g L−1 d−1 of antibodies were harvested. The perfusion processes were automated with both cell bleed control and glucose concentration control. Cell retention was performed using Repligen’s (Waltham, MA, USA) XCell® ATF perfusion systems and single-use devices. In summary, approaches for successfully scaling highly productive fed-batch and perfusion processes between geometrically dissimilar lab and pilot scale bioreactors were demonstrated. The advantages of perfusion in comparison to fed-batch processes were also observed.