MHAiR: A Dataset of Audio-Image Representations for Multimodal Human Actions

Author:

Shaikh Muhammad Bilal1ORCID,Chai Douglas1ORCID,Islam Syed Mohammed Shamsul2ORCID,Akhtar Naveed3ORCID

Affiliation:

1. School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia

2. School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia

3. School of Computing and Information Systems, The University of Melbourne, Melbourne Connect, 700 Swanston Street, Carlton, WA 3053, Australia

Abstract

Audio-image representations for a multimodal human action (MHAiR) dataset contains six different image representations of the audio signals that capture the temporal dynamics of the actions in a very compact and informative way. The dataset was extracted from the audio recordings which were captured from an existing video dataset, i.e., UCF101. Each data sample captured a duration of approximately 10 s long, and the overall dataset was split into 4893 training samples and 1944 testing samples. The resulting feature sequences were then converted into images, which can be used for human action recognition and other related tasks. These images can be used as a benchmark dataset for evaluating the performance of machine learning models for human action recognition and related tasks. These audio-image representations could be suitable for a wide range of applications, such as surveillance, healthcare monitoring, and robotics. The dataset can also be used for transfer learning, where pre-trained models can be fine-tuned on a specific task using specific audio images. Thus, this dataset can facilitate the development of new techniques and approaches for improving the accuracy of human action-related tasks and also serve as a standard benchmark for testing the performance of different machine learning models and algorithms.

Funder

Edith Cowan University (ECU), Australia and Higher Education Commission (HEC), Pakistan

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3