Abstract
Mechanomyography (MMG) is a technique of recording muscles activity that may be considered a suitable choice for human–machine interfaces (HMI). The design of sensors used for MMG and their spatial distribution are among the deciding factors behind their successful implementation to HMI. We present a new design of a MMG sensor, which consists of two coupled piezoelectric discs in a single housing. The sensor’s functionality was verified in two experimental setups related to typical MMG applications: an estimation of the force/MMG relationship under static conditions and a neural network-based gesture classification. The results showed exponential relationships between acquired MMG and exerted force (for up to 60% of the maximal voluntary contraction) alongside good classification accuracy (94.3%) of eight hand motions based on MMG from a single-site acquisition at the forearm. The simplification of the MMG-based HMI interface in terms of spatial arrangement is rendered possible with the designed sensor.
Funder
Warsaw University of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献