Abstract
Nanoparticles can be used as a smart drug delivery system, when they release the drug only upon degradation by specific enzymes. A method to create such responsive materials is the formation of hydrogel nanoparticles, which have enzymatically degradable crosslinkers. Such hydrogel nanoparticles were prepared by ionotropic gelation sodium alginate with lysine-rich peptide sequences—either α-poly-L-lysine (PLL) or the aggrecanase-labile sequence KKKK-GRD-ARGSV↓NITEGE-DRG-KKKK. The nanoparticle suspensions obtained were analyzed by means of dynamic light scattering and nanoparticle tracking analysis. Degradation experiments carried out with the nanoparticles in suspension revealed enzyme-induced lability. Drugs present in the polymer solution during the ionotropic gelation can be encapsulated in the nanoparticles. Drug loading was investigated for interferon- (IFN-) as a model, using a bioluminescence assay with MX2Luc2 cells. The encapsulation efficiency for IFN- was found to be approximately 25%. The nanoparticles suspension can be used to spray-coat titanium alloys (Ti-6Al-4V) as a common implant material. The coatings were proven by ellipsometry, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. An enzyme-responsive decrease in layer thickness is observed due to the degradation of the coatings. The Alg/peptide coatings were cytocompatible for human gingival fibroblasts (HGFIB), which was investigated by CellTiterBlue and lactate dehydrogenase (LDH) assay. However, HGFIBs showed poor adhesion and proliferation on the Alg/peptide coatings, but these could be improved by modification of the alginate with a RGD-peptide sequence. The smart drug release system presented can be further tailored to have the right release kinetics and cell adhesion properties.
Funder
Deutsche Forschungsgemeinschaft
Subject
Molecular Biology,Biochemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献