Fractal Geometric Model for Statistical Intermittency Phenomenon

Author:

Tarraf Walid12ORCID,Queiros-Condé Diogo2,Ribeiro Patrick2,Absi Rafik1ORCID

Affiliation:

1. Laboratory of Research in Industrial Eco-Innovation and Energetic (LR2E), Ecole Supérieure d’Ingénieurs ECAM-EPMI, 13 Bd de l’Hautil, 95000 Cergy, France

2. Laboratory of Energetics Mechanics and Electromagnetism (LEME), Université Paris Nanterre, Pôle de Ville d’Avray, 50 rue de Sèvres, 92410 Ville d’Avray, France

Abstract

The phenomenon of intermittency has remained a theoretical concept without any attempts to approach it geometrically with the use of a simple visualization. In this paper, a particular geometric model of point clustering approaching the Cantor shape in 2D, with a symmetry scale θ being an intermittency parameter, is proposed. To verify its ability to describe intermittency, to this model, we applied the entropic skin theory concept. This allowed us to obtain a conceptual validation. We observed that the intermittency phenomenon in our model was adequately described with the multiscale dynamics proposed by the entropic skin theory, coupling the fluctuation levels that extended between two extremes: the bulk and the crest. We calculated the reversibility efficiency γ with two different methods: statistical and geometrical analyses. Both efficiency values, γstat and γgeo, showed equality with a low relative error margin, which actually validated our suggested fractal model for intermittency. In addition, we applied the extended self-similarity (E.S.S.) to the model. This highlighted the intermittency phenomenon as a deviation from the homogeneity assumed by Kolmogorov in turbulence.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference60 articles.

1. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers;Kolmogorov;Proc. R. Soc. A Math. Phys. Eng. Sci.,1941

2. Kline, S.J. (1959). Turbulence Intro to Mechanism and Theory Hinze 1959, McGraw-Hill. [1st ed.].

3. Entropic-Skins Geometry to Describe Wall Turbulence Intermittency;Carlier;Entropy,2015

4. Kolmogorov’s Refined Similarity Hypotheses;Stolovitzky;Phys. Rev. Lett.,1992

5. David, T. (2016). Basics of Engineering Turbulence, Elsevier. [1st ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3