Abstract
This study conducted a comparative analysis of the amino acid compositions of Chinese Huangnuo 9 fresh sweet–waxy corn from three different provinces in China—Inner Mongolia, Jilin, and Heilongjiang Province. Moreover, we established a nutritive evaluation system based on amino acid profiles to evaluate, compare, and rank the fresh sweet–waxy corn planted in different regions. A total of 17 amino acids were quantified, and the amino acid composition of fresh sweet–waxy corn was analyzed and evaluated. The amino acid quality was determined by the amino acid pattern spectrum, chemical evaluations (including CS, AAS, EAAI, BV, U(a,u), NI, F, predict PER, and PDCAAS), flavor evaluation, amino acid matching degree evaluation, and the results of the factor analysis. The results showed that the protein content of fresh corn 1–1 from Inner Mongolia was the highest (40.26 ± 0.35 mg/g), but the factor analysis results, digestion, and absorption efficiency of fresh corn 1–2 were the best. The amino acid profile of fresh corn 1–1 was closest to each evaluation’s model spectrum. The results of the diversity evaluations in fresh corn 3–2 were the best, and fresh corn 3–3 had the most essential amino acid content. A total of 17 amino acids in fresh corn were divided into three principal component factor analyses: functional principal components (Leu, Pro, Glu, His, Ile, Ser, Met, Val, Tyr, Thr), regulatory principal components (Lys, Gly, Ala, Asp, Arg, Trp), and protection principal components (Phe). The scores of the three principal components and the comprehensive score in fresh corn 1–2 were all the highest, followed by 3–3 and 1–1. The amino acid nutritional values of fresh corn 1–2 were the highest in 12 samples.
Subject
Food Science,Nutrition and Dietetics
Reference83 articles.
1. Waxy corn and WX gene;Song;J. Maize Sci.,1993
2. Current situation and development trend of fresh corn seed industry in China;Xu;Chin. Seed Ind.,2020
3. Amino Acid Composition and Nutritional Value Evaluation of Lentinus edodes from Different Habitats;Li;Storage Process,2020
4. Wild and commercial mushrooms as source of nutrients and nutraceuticals
5. Functional Properties and Protein Digestibility of Protein Concentrates and Isolates Produced from Kariya (Hildergadia bateri) Seed;Oladipupo;J. Food Processing Preserv.,2016