Base Station Selection for Hybrid TDOA/RTT/DOA Positioning in Mixed LOS/NLOS Environment

Author:

Deng Zhongliang,Wang HanhuaORCID,Zheng Xinyu,Yin LuORCID

Abstract

The fifth generation (5G) cellular communication system is designed to support Time Difference of Arrival (TDOA), Round-Trip Time (RTT), and Direction of Arrival (DOA) measurements for indoor positioning. To mitigate the positioning error caused by non-line-of-sight (NLOS), existing base station selection methods identify channel conditions and only use line-of-sight (LOS) signals for positioning. However, different selected base station combination would lead to a different geometric dilution of precision (GDOP), base station selection based only on channel condition is not fully applicable for the hybrid positioning. This paper derives the GDOP for the hybrid TDOA, RTT, and DOA positioning, and proposes a GDOP-assisted base station selection method, which is based on both channel conditions and GDOP value changes. The simulation shows that using the proposed base station selection method could lead to higher positioning accuracy than base station selection based only on channel condition. In the simulation, in the side region of the scenario, where the change of selected base station combination causes a notable increment in GDOP value, the positioning accuracy improvement caused by the proposed method is greater than that in the center region.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. A Survey of Indoor Localization Systems and Technologies

2. Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G

3. 3GPP TS 22.261 Service Requirements for the 5G System (V16.7.0)https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107

4. 3GPP TR 22.872 Study on Positioning Use Cases (V16.1.0)https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3280

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3