Abstract
Technology-aided hand functional assessment has received considerable attention in recent years. Its applications are required to obtain objective, reliable, and sensitive methods for clinical decision making. This systematic review aims to investigate and discuss characteristics of technology-aided hand functional assessment and their applications, in terms of the adopted sensing technology, evaluation methods and purposes. Based on the shortcomings of current applications, and opportunities offered by emerging systems, this review aims to support the design and the translation to clinical practice of technology-aided hand functional assessment. To this end, a systematic literature search was led, according to recommended PRISMA guidelines, in PubMed and IEEE Xplore databases. The search yielded 208 records, resulting into 23 articles included in the study. Glove-based systems, instrumented objects and body-networked sensor systems appeared from the search, together with vision-based motion capture systems, end-effector, and exoskeleton systems. Inertial measurement unit (IMU) and force sensing resistor (FSR) resulted the sensing technologies most used for kinematic and kinetic analysis. A lack of standardization in system metrics and assessment methods emerged. Future studies that pertinently discuss the pathophysiological content and clinimetrics properties of new systems are required for leading technologies to clinical acceptance.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference60 articles.
1. Functional Hand Evaluations: A Review;Scott;Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc.,1987
2. Causes and consequences of hand injuries
3. Fundamentals. Fundamentals of Hand Therapy;Cooper,2014
4. Taking Proportional Out of Stroke Recovery
5. Recovery after stroke: not so proportional after all?
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献