Effect of TiO2 and ZnO Nanoparticles on the Performance of Dielectric Nanofluids Based on Vegetable Esters During Their Aging

Author:

Fernández Inmaculada,Valiente Rafael,Ortiz Félix,Renedo Carlos J.,Ortiz Alfredo

Abstract

Over the last few decades the insulating performance of transformer oils has been broadly studied under the point of view of nanotechnology, which tries to improve the insulating and heat dissipation performance of transformer oils by suspending nanoparticles. Many authors have analyzed the thermal and dielectric behavior of vegetable oil based-nanofluids, however, very few works have studied the evolution of these liquids during thermal aging and their stability. In this paper has been evaluated the performance of aged vegetable oil based-nanofluids, which have been subjected to accelerated thermal aging at 150 °C. Nanoparticles of TiO2 and ZnO have been dispersed in a commercial natural ester. Breakdown voltage, resistivity, dissipation factor and acidity of nanofluid samples have been measured according to standard methods, as well as stability. Moreover, it has been analyzed the degradation of Kraft paper through the degree of polymerization (DP). The results have showed that although nanoparticles improve breakdown voltage, they increase the ageing of insulation liquids and dielectric paper.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3