Abstract
This work proposed a miniaturized nanowire laser with high end-facet reflection. The high end-facet reflection was realized by integrating an Ag grating between the nanowire and the substrate. Its propagation and reflection properties were calculated using the finite elements method. The simulation results show that the reflectivity can be as high as 77.6% for a nanowire diameter of 200 nm and a period of 20, which is nearly three times larger than that of the nanowire without a metal grating reflector. For an equal length of nanowire with/without the metal grating reflector, the corresponding threshold gain is approximately a quarter of that of the nanowire without the metal grating reflector. Owing to the high reflection, the length of the nanowire can be reduced to 0.9 μm for the period of 5, resulting in a genuine nanolaser, composed of nanowire, with three dimensions smaller than 1 μm (the diameter is 200 nm). The proposed nanowire laser with a lowered threshold and reduced dimensions would be of great significance in on-chip information systems and networks.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献