Effective Platinum-Copper Catalysts for Methanol Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cell

Author:

Menshchikov Vladislav,Alekseenko AnastasyaORCID,Guterman Vladimir,Nechitailov Andrey,Glebova NadezhdaORCID,Tomasov AleksandrORCID,Spiridonova Olga,Belenov Sergey,Zelenina Natalia,Safronenko Olga

Abstract

The behavior of supported alloyed and de-alloyed platinum-copper catalysts, which contained 14–27% wt. of Pt, was studied in the reactions of methanol electrooxidation (MOR) and oxygen electroreduction (ORR) in 0.1 M HClO4 solutions. Alloyed PtCux/C catalysts were prepared by a multistage sequential deposition of copper and platinum onto a Vulcan XC72 dispersed carbon support. De-alloyed PtCux−y/C catalysts were prepared by PtCux/C materials pretreatment in acid solutions. The effects of the catalysts initial composition and the acid treatment condition on their composition, structure, and catalytic activity in MOR and ORR were studied. Functional characteristics of platinum-copper catalysts were compared with those of commercial Pt/C catalysts when tested, both in an electrochemical cell and in H2/Air membrane-electrode assembly (MEA). It was shown that the acid pretreatment of platinum-copper catalysts practically does not have negative effect on their catalytic activity, but it reduces the amount of copper passing into the solution during the subsequent electrochemical study. The activity of platinum-copper catalysts in the MOR and the current-voltage characteristics of the H2/Air proton-exchange membrane fuel cell MEAs measured in the process of their life tests were much higher than those of the Pt/C catalysts.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference50 articles.

1. Fuel Cell Fundamentals;O’Hayre,2009

2. Proton Exchange Membrane Fuel Cell Reversal: A Review

3. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells

4. Proton exchange membrane (PEM) fuel cells: Opening doors to fuel cell commercialization;Crawley;Fuel Cell Today,2006

5. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3