Titanium-Doped P-Type WO3 Thin Films for Liquefied Petroleum Gas Detection

Author:

He Yuzhenghan,Shi Xiaoyan,Chen KyleORCID,Yang Xiaohong,Chen JunORCID

Abstract

Gas sensors are an important part of smart homes in the era of the Internet of Things. In this work, we studied Ti-doped P-type WO3 thin films for liquefied petroleum gas (LPG) sensors. Ti-doped tungsten oxide films were deposited on glass substrates by direct current reactive magnetron sputtering from a W-Ti alloy target at room temperature. After annealing at 450 °C in N2 ambient for 60 min, p-type Ti-doped WO3 was achieved for the first time. The measurement of the room temperature Hall-effect shows that the film has a resistivity of 5.223 × 103 Ωcm, a hole concentration of 9.227 × 1012 cm−3, and mobility of 1.295 × 102 cm2V−1s−1. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses reveal that the substitution of W6+ with Ti4+ resulted in p-type conductance. The scanning electron microscope (SEM) images show that the films consist of densely packed nanoparticles. The transmittance of the p-type films is between 72% and 84% in the visible spectra and the optical bandgap is 3.28 eV. The resistance increased when the films were exposed to the reducing gas of liquefied petroleum gas, further confirming the p-type conduction of the films. The p-type films have a quick response and recovery behavior to LPG.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3