Abstract
The current work focuses on the development of mineral scaffolds with complex composition and controlled morphology by using a polymeric template in the form of nonwoven fibre webs fabricated through electrospinning. By a cross-linking process, gelatine fibres stable in aqueous solutions were achieved, these being further subjected to a loading step with two types of mineral phases: calcium phosphates deposited by chemical reaction and barium titanate nanoparticles as decoration on the previously achieved structures. Thus, hybrid materials were obtained and subsequently processed in terms of freeze-drying and heat treating with the purpose of burning the template and consolidating the mineral part as potential bone implants with improved biological response by external stimulation. The results confirmed the tunable morphology, as well as the considerable applicability of both as-prepared and final samples for the development of medical devices, which encourages the continuation of research in the direction of assessing the synergistic contribution of barium titanate domains polarisation/magnetisation by external applied fields.
Funder
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Subject
General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献