Pillararenes Trimer for Self-Assembly

Author:

Zhang Huacheng,Liu Zhaona,Fu Hui

Abstract

Pillararenes trimer with particularly designed structural geometry and excellent capacity of recognizing guest molecules is a very efficient and attractive building block for the fabrication of advanced self-assembled materials. Pillararenes trimers could be prepared via both covalent and noncovalent bonds. The classic organic synthesis reactions such as click reaction, palladium-catalyzed coupling reaction, amidation, esterification, and aminolysis are employed to build covalent bonds and integrate three pieces of pillararenes subunits together into the “star-shaped” trimers and linear foldamers. Alternatively, pillararenes trimers could also be assembled in the form of host-guest inclusions and mechanically interlocked molecules via noncovalent interactions, and during those procedures, pillararenes units contribute the cavity for recognizing guest molecules and act as a “wheel” subunit, respectively. By fully utilizing the driving forces such as host-guest interactions, charge transfer, hydrophobic, hydrogen bonding, and C–H…π and π–π stacking interactions, pillararenes trimers-based supramolecular self-assemblies provide a possibility in the construction of multi-dimensional materials such as vesicular and tubular aggregates, layered networks, as well as frameworks. Interestingly, those assembled materials exhibit interesting external stimuli responsiveness to e.g., variable concentrations, changed pH values, different temperature, as well as the addition/removal of competition guests and ions. Thus, they could further be used for diverse applications such as detection, sorption, and separation of significant multi-analytes including metal cations, anions, and amino acids.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3