Synergy Effect of Au and SiO2 Modification on SnO2 Sensor Properties in VOCs Detection in Humid Air

Author:

Gulevich Dayana,Rumyantseva MarinaORCID,Gerasimov EvgenyORCID,Khmelevsky NikolayORCID,Tsvetkova Elena,Gaskov Alexander

Abstract

Nanocomposites based on Au- and SiO2-modified SnO2 were studied as sensitive materials for ethanol and benzene detection in dry (RH = 1%) and humid (RH = 20%) air. Modification of SnO2 by amorphous SiO2 (13 mol.%) was effectuated by hydrothermal synthesis; modification by Au nanoparticles (1 wt.%) was carried out via impregnation by citrate-stabilized Au sol. The composition of the samples was determined by X-ray fluorescent spectroscopy and energy-dispersive X-ray spectroscopy. The microstructure was characterized by XRD, HRTEM, and low-temperature nitrogen adsorption. The surface groups were investigated by XPS, TPR-H2, and FTIR spectroscopy. DRIFT spectroscopy was performed to investigate the interaction between ethanol and the surface of the synthesized materials. Studies of the sensor properties have shown that in all cases the most sensitive is the SnO2/SiO2-Au nanocomposite. This material retains high sensitivity even in a humid atmosphere. The obtained results are discussed in terms of the synergistic effect of two modifiers (Au and SiO2) in the formation of sensor properties of SnO2/SiO2–Au nanocomposites.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3