Control of pH-Responsiveness in Graphene Oxide Grafted with Poly-DEAEMA via Tailored Functionalization

Author:

Noriega-Navarro Roxana,Castro-Medina Jésica,Escárcega-Bobadilla Martha V.ORCID,Zelada-Guillén Gustavo A.ORCID

Abstract

Polymer-grafted nanomaterials based on carbon allotropes and their derivatives (graphene oxide (GO), etc.) are typically prepared by successive reaction stages that depend upon the initial functionalities in the nanostructure and the polymerization type needed for grafting. However, due to the multiple variables involved in the functionalization steps, it is commonly difficult to predict the properties in the final product and to correlate the material history with its final performance. In this work, we explored the steps needed to graft the carboxylic acid moieties in GO (COOH@GO) with a pH-sensitive polymer, poly[2-(diethylamino)ethyl methacrylate] (poly[DEAEMA]), varying the reactant ratios at each stage prior to polymerization. We studied the combinatorial relationship between these variables and the behavior of the novel grafted material GO-g-poly[DEAEMA], in terms of swelling ratio vs. pH (%Q) in solid specimens and potentiometric response vs. Log[H+] in a solid-state sensor format. We first introduced N-hydroxysuccinimide (NHS)-ester moieties at the –COOH groups (GO-g-NHS) by a classical activation with N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide (EDC). Then, we substituted the NHS-ester groups by polymerizable amide-linked acrylic moieties using 2-aminoethyl methacrylate (AEMA) at different ratios to finally introduce the polymer chains via radical polymerization in an excess of DEAEMA monomer. We found correlated trends in swelling pH range, interval of maximum and minimum swelling values, response in potentiometry and potentiometric linear range vs. Log[H+] and could establish their relationship with the combinatorial stoichiometries in synthetic stages.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3