A Waveform-Encoded SAR Implementation Using a Limited Number of Cyclically Shifted Chirps

Author:

Jeon Se-YeonORCID,Glatz Fabian,Villano MichelangeloORCID

Abstract

Synthetic aperture radar (SAR) provides high-resolution images of the Earth’s surface irrespective of sunlight and weather conditions. In conventional spaceborne SAR, nadir echoes caused by the pulsed operation of SAR may significantly affect the SAR image quality. Therefore, the pulse repetition frequency (PRF) is constrained within the SAR system design to avoid the appearance of nadir echoes in the SAR image. As an alternative, the waveform-encoded SAR concept using a pulse-to-pulse variation of the transmitted waveform and dual-focus postprocessing can be exploited for nadir echo removal and to alleviate the PRF constraints. In particular, cyclically shifted chirps have been proposed as a possible waveform variation scheme. However, a large number of distinct waveforms is required to enable the simple implementation of the concept. This work proposes a technique based on the Eulerian circuit for generating a waveform sequence starting from a reduced number of distinct cyclically shifted chirps that can be effectively exploited for waveform-encoded SAR. The nadir echo suppression performance of the proposed scheme is analyzed through simulations using real TerraSAR-X data and a realistic nadir echo model that shows how the number of distinct waveforms and therefore the system complexity can be reduced without significant performance loss. These developments reduce the calibration burden and make the concept viable for implementation in future SAR systems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference24 articles.

1. A tutorial on synthetic aperture radar

2. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation;Cumming,2005

3. TerraSAR-X System Performance Characterization and Verification

4. Synthetic Aperture Radar: Systems and Signal Processing;Curlander,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3