Lightning Activity Observed by the FengYun-4A Lightning Mapping Imager

Author:

Cao Dongjie,Lu Feng,Zhang Xiaohu,Yang Jing

Abstract

The Lightning Mapping Imager (LMI) onboard the geostationary meteorological satelliteFengYun-4A (FY-4A) detects both intra-cloud (IC) and cloud-to-ground (CG) lightning continuously during daytime and nighttime. This study examined, for the first time, the optical characteristics and distribution of the “Event,” “Group,” and “Flash” observed by the LMI in the whole LMI observation domain. The optical properties and spatial distribution of the LMI lightning were compared with those of the Lightning Imaging Sensor on the International Space Station (ISS-LIS) based on the dataset during 2018–2020. Due to the different spatial resolutions and detection efficiencies of these two lightning imagers, the number of ISS-LIS lightning was more than that of LMI lightning. The ISS-LIS Flash duration was also larger than that of the LMI Flash. The duration, radiance, and footprint of LMI lightning in different regions were analyzed in detail based on the LMI lightning dataset in 2019. The duration and radiance of the Flash were generally less than 50–500 ms and 200 Jm−2ster−1μm−1, respectively. The footprint of Flashes was distributed from 200 to 600 km2. The number of Groups per Flash was mostly less than five. Considering the spatial distribution and temporal variations in the LMI lightning compared with the ground-based Lightning Location Network in China (LLNC), it was found that the LMI Group number was close to the LLNC CG (Cloud-to-Ground) Event number. The maximum Flash density was found in the middle and lower south of the Yangtze River and Pearl River Delta region, respectively, while the lower values were in western China, where the mean radiance per Flash was greater. There was more LMI lightning during the nighttime than that during the daytime, indicating the higher detection efficiency of the LMI in the nighttime than in the daytime.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic Research Fund of Key Laboratory of Middle Atmosphere and Global environment Observation (LAGEO) Institute of Atmospheric Physics, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3