Surface Flux Patterns of Nutrient Concentrations and Total Suspended Solids in Western Carpathian Stream within Agricultural, Forest, and Grassland Landscapes

Author:

Halecki Wiktor1ORCID,Bedla Dawid2

Affiliation:

1. Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland

2. Department of Ecology, Climatology and Air Protection, University of Agriculture in Krakow, Mickiewicza 21, 30-120 Kraków, Poland

Abstract

The intricate processes of surface water erosion are vital for ecological systems and river-scale management; yet, understanding them comprehensively remains a challenge. Forested agricultural catchments, especially in the Carpathian region, face significant degradation, potentially leading to inorganic nutrient leaching and total suspended solid (TSS) flux. Continuous rainwater inundation of soils in river valleys exacerbates this issue. Utilizing innovative tools like SWAT+, studies have revealed higher concentrations of inorganic nutrients in main watercourses from flysch catchments, with agricultural use linked to N-NO3− concentrations and pasture use linked to anion P-PO43−. Maintaining detailed records is crucial for researchers comparing data. SWAT+ proves valuable for studying TSS washing out and inorganic nutrient leaching, informing collaborative watershed management policies involving stakeholders from agriculture, conservation, and water management sectors. The insights on nutrient leaching, particularly phosphorus (P) and nitrogen (N), are instrumental for shaping policies targeting nutrient pollution within pasture land use for EU agriculture. These findings can guide policy frameworks focused on sustainable practices, especially for eco-schemes, and encourage collaborative watershed management efforts.

Funder

the Ministry of Science and Higher Education for University of Agriculture in Krakow

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3