Exploring Copper Oxide and Copper Sulfide for Non-Enzymatic Glucose Sensors: Current Progress and Future Directions

Author:

Miya Nonkululeko1,Machogo-Phao Lerato F. Eugeni1ORCID,Ntsendwana Bulelwa1

Affiliation:

1. DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa

Abstract

Millions of people worldwide are affected by diabetes, a chronic disease that continuously grows due to abnormal glucose concentration levels present in the blood. Monitoring blood glucose concentrations is therefore an essential diabetes indicator to aid in the management of the disease. Enzymatic electrochemical glucose sensors presently account for the bulk of glucose sensors on the market. However, their disadvantages are that they are expensive and dependent on environmental conditions, hence affecting their performance and sensitivity. To meet the increasing demand, non-enzymatic glucose sensors based on chemically modified electrodes for the direct electrocatalytic oxidation of glucose are a good alternative to the costly enzymatic-based sensors currently on the market, and the research thereof continues to grow. Nanotechnology-based biosensors have been explored for their electronic and mechanical properties, resulting in enhanced biological signaling through the direct oxidation of glucose. Copper oxide and copper sulfide exhibit attractive attributes for sensor applications, due to their non-toxic nature, abundance, and unique properties. Thus, in this review, copper oxide and copper sulfide-based materials are evaluated based on their chemical structure, morphology, and fast electron mobility as suitable electrode materials for non-enzymatic glucose sensors. The review highlights the present challenges of non-enzymatic glucose sensors that have limited their deployment into the market.

Funder

Department of Science and Innovation/Nanotechnology Innovation Centre

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3