Investigation of Hydrothermal Performance in Micro-Channel Heat Sink with Periodic Rectangular Fins

Author:

Zhao Heng1,Ma Honghua2,Yan Xiang1,Yu Huaqing1,Xiao Yongjun1,Xiao Xiao3,Liu Hui1

Affiliation:

1. School of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan 432000, China

2. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China

3. Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning 437100, China

Abstract

The micro-channel heat sink (MCHS) is an excellent choice due to its exceptional cooling capabilities, surpassing those of its competitors. In this research paper, a computational fluid dynamics analysis was performed to investigate the laminar flow and heat transfer characteristics of five different configurations of a variable geometry rectangular fin. The study utilized a water-cooled smooth MCHS as the basis. The results indicate that the micro-channel heat sink with a variable geometry rectangular fin has better heat dissipation capacity than a straight-type micro-channel heat sink, but at the same time, it has larger pressure loss. Based on the analysis of various rectangular fin shapes and Reynolds numbers in this study, the micro-channel heat sink with rectangular fins exhibits Nusselt numbers and friction factors that are 1.40–2.02 and 2.64–4.33 times higher, respectively, compared to the smooth heat sink. This significant improvement in performance results in performance evaluation criteria ranging from 1.23–1.95. Further, it is found that at a relatively small Reynolds number, the micro-channel heat sink with a variable geometry rectangular fin has obvious advantages in terms of overall cooling performance. Meanwhile, this advantage will decrease when the Reynolds number is relatively large.

Funder

Project of the Hubei Provincial Department of Science and Technology

Project of Hubei Engineering University of Teaching Research

Ministry of Education University-Industry Cooperation Collaborative Education Project

College Students’ innovation and entrepreneurship training program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3