Nested Variational Chain and Its Application in Massive MIMO Detection for High-Order Constellations

Author:

Wang Qiwei1ORCID

Affiliation:

1. School of Telecommunications Engineering, Xidian University, Xi’an 710071, China

Abstract

Multiple input multiple output (MIMO) technology necessitates detection methods with high performance and low complexity; however, the detection problem becomes severe when high-order constellations are employed. Variational approximation-based algorithms prove to deal with this problem efficiently, especially for high-order MIMO systems. Two typical algorithms named Gaussian tree approximation (GTA) and expectation consistency (EC) attempt to approximate the true likelihood function under discrete finite-set constraints with a new distribution by minimizing the Kullback–Leibler (KL) divergence. As the KL divergence is not a true distance measure, ’exclusive’ and ’inclusive’ KL divergences are utilized by GTA and EC, respctively, demonstrating different performances. In this paper, we further combine the two asymmetric KL divergences in a nested way by proposing a generic algorithm framework named nested variational chain. Acting as an initial application, a MIMO detection algorithm named Gaussian tree approximation expectation consistency (GTA-EC) can thus be presented along with its alternative version for better understanding. With less computational burden compared to its counterparts, GTA-EC is able to provide better detection performance and diversity gain, especially for large-scale high-order MIMO systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3