Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications

Author:

Khramtsov Igor A.ORCID,Fedyanin Dmitry Yu.ORCID

Abstract

Color centers in silicon carbide have recently emerged as one of the most promising emitters for bright single-photon emitting diodes (SPEDs). It has been shown that, at room temperature, they can emit more than 109 photons per second under electrical excitation. However, the spectral emission properties of color centers in SiC at room temperature are far from ideal. The spectral properties could be significantly improved by decreasing the operating temperature. However, the densities of free charge carriers in SiC rapidly decrease as temperature decreases, which reduces the efficiency of electrical excitation of color centers by many orders of magnitude. Here, we study for the first time the temperature characteristics of SPEDs based on color centers in 4H-SiC. Using a rigorous numerical approach, we demonstrate that although the single-photon electroluminescence rate does rapidly decrease as temperature decreases, it is possible to increase the SPED brightness to 107 photons/s at 100 K using the recently predicted effect of hole superinjection in homojunction p-i-n diodes. This gives the possibility to achieve high brightness and good spectral properties at the same time, which paves the way toward novel quantum photonics applications of electrically driven color centers in silicon carbide.

Funder

Ministry of Science and Higher Education of the Russian Federation

Grant of the President of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-temperature photoluminescence measurement with a micromachined Joule-Thomson cooler;IOP Conference Series: Materials Science and Engineering;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3