Effects of Fe-Ions Irradiation on the Microstructure and Mechanical Properties of FeCrAl-1.5wt.% ZrC Alloys

Author:

Wang Runzhong,Wang Hui,Zhu Xiaohui,Liang Xue,Li Yuanfei,Gao Yunxia,An Xuguang,Liu Wenqing

Abstract

Fe-13Cr-3.5Al-2.0Mo-1.5wt.% ZrC alloy was irradiated by 400 keV Fe+ at 400 °C at different doses ranging from 6.35 × 1014 to 1.27 × 1016 ions/cm2 with a corresponding damage of 1.0–20.0 dpa, respectively, to investigate the effects of different radiation doses on the hardness and microstructure of the reinforced FeCrAl alloys in detail by nanoindentation, transmission electron microscopy (TEM), and atom probe tomography (APT). The results show that the hardness at 1.0 dpa increases from 5.68 to 6.81 GPa, which is 19.9% higher than a non-irradiated specimen. With an increase in dose from 1.0 to 20.0 dpa, the hardness increases from 6.81 to 8.01 GPa, which is an increase of only 17.6%, indicating that the hardness has reached saturation. TEM and APT results show that high-density nano-precipitates and low-density dislocation loops forme in the 1.0 dpa region, compared to the non-irradiated region. Compared with 1.0 dpa region, the density and size of nano-precipitates in the 20.0 dpa region have no significant change, while the density of dislocation loops increases. Irradiation results in a decrease of molybdenum and carbon in the strengthening precipitates (Zr, Mo) (C, N), and the proportionate decrease of molybdenum and carbon is more obvious with the increase in damage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3