Abstract
It is important to develop cost-efficient electrocatalysts used in the oxygen reduction reaction (ORR) for widespread applications in fuel cells. Palladium (Pd) is a promising catalyst, due to its more abundant reserves and lower price than platinum (Pt), and doping an earth-abundant 3d-transition metal M into Pd to form Pd–M bimetallic alloys may not only further reduce the use of expensive Pd but also promote the electrocatalytic performance of ORR, owing to the synergistic effect between Pd and M. Here we report a cyanogel-derived synthesis of PdFe alloys with porous nanostructure via a simple coinstantaneous reduction reaction by using K2PdIICl4/K4FeII(CN)6 cyanogel as precursor. The synthesized PdFe alloys possess hydrangea-like morphology and porous nanostructure, which are beneficial to the electrochemical performance in ORR. The onset potential of the porous PdFe nanohydrangeas is determined to be 0.988 V, which is much more positive than that of commercial Pt/C catalyst (0.976 V) and Pd black catalyst (0.964 V). Resulting from the unique structural advantages and synergetic effect between bimetals, the synthesized PdFe nanohydrangeas with porous structure have outstanding electrocatalytic activity and stability for ORR, compared with the commercial Pd black and Pt/C.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献