Monitoring and Optimisation of Ag Nanoparticle Spray-Coating on Textiles

Author:

Trabucco Sara,Ortelli SimonaORCID,Del Secco BenedettaORCID,Zanoni IlariaORCID,Belosi FrancoORCID,Ravegnani FabrizioORCID,Nicosia Alessia,Blosi Magda,Costa Anna LuisaORCID

Abstract

An automatic lab-scaled spray-coating machine was used to deposit Ag nanoparticles (AgNPs) on textile to create antibacterial fabric. The spray process was monitored for the dual purpose of (1) optimizing the process by maximizing silver deposition and minimizing fluid waste, thereby reducing suspension consumption and (2) assessing AgNPs release. Monitoring measurements were carried out at two locations: inside and outside the spray chamber (far field). We calculated the deposition efficiency (E), finding it to be enhanced by increasing the spray pressure from 1 to 1.5 bar, but to be lowered when the number of operating sprays was increased, demonstrating the multiple spray system to be less efficient than a single spray. Far-field AgNPs emission showed a particle concentration increase of less than 10% as compared to the background level. This finding suggests that under our experimental conditions, our spray-coating process is not a critical source of worker exposure.

Funder

"ASINA" (Anticipating Safety Issues at the Design Stage of NAno Product Development) European H2020 project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3