Abstract
As a promising hydrogen storage material, sodium borohydride (NaBH4) exhibits superior stability in alkaline solutions and delivers 10.8 wt.% theoretical hydrogen storage capacity. Nevertheless, its hydrolysis reaction at room temperature must be activated and accelerated by adding an effective catalyst. In this study, we synthesize Co nanoparticles supported on bagasse-derived porous carbon (Co@xPC) for catalytic hydrolytic dehydrogenation of NaBH4. According to the experimental results, Co nanoparticles with uniform particle size and high dispersion are successfully supported on porous carbon to achieve a Co@150PC catalyst. It exhibits particularly high activity of hydrogen generation with the optimal hydrogen production rate of 11086.4 mLH2∙min−1∙gCo−1 and low activation energy (Ea) of 31.25 kJ mol−1. The calculation results based on density functional theory (DFT) indicate that the Co@xPC structure is conducive to the dissociation of [BH4]−, which effectively enhances the hydrolysis efficiency of NaBH4. Moreover, Co@150PC presents an excellent durability, retaining 72.0% of the initial catalyst activity after 15 cycling tests. Moreover, we also explored the degradation mechanism of catalyst performance.
Subject
General Materials Science,General Chemical Engineering
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献