Abstract
With the increasing energy demand for portable electronics, electric vehicles, and green energy storage solutions, the development of high-performance supercapacitors has been at the forefront of energy storage and conversion research. In the past decade, many scientific publications have been dedicated to designing hybrid electrode materials composed of vanadium pentoxide (V2O5) and carbon nanomaterials to bridge the gap in energy and power of traditional batteries and capacitors. V2O5 is a promising electrode material owing to its natural abundance, nontoxicity, and high capacitive potential. However, bulk V2O5 is limited by poor conductivity, low porosity, and dissolution during charge/discharge cycles. To overcome the limitations of V2O5, many researchers have incorporated common carbon nanostructures such as reduced graphene oxides, carbon nanotubes, carbon nanofibers, and other carbon moieties into V2O5. The carbon components facilitate electron mobility and act as porous templates for V2O5 nucleation with an enhanced surface area as well as interconnected surface morphology and structural stability. This review discusses the development of various V2O5/carbon hybrid materials, focusing on the effects of different synthesis methods, V2O5/carbon compositions, and physical treatment strategies on the structure and electrochemical performance of the composite material as promising supercapacitor electrodes.
Funder
National Research Foundation of Korea
Subject
General Materials Science,General Chemical Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献