A Deep Learning Analysis Reveals Nitrogen-Doped Graphene Quantum Dots Damage Neurons of Nematode Caenorhabditis elegans

Author:

Xu Hongsheng,Wang Xinyu,Zhang Xiaomeng,Cheng Jin,Zhang Jixiang,Chen Min,Wu TianshuORCID

Abstract

Along with the rapidly increasing applications of nitrogen-doped graphene quantum dots (N-GQDs) in the field of biomedicine, the exposure of N-GQDs undoubtedly pose a risk to the health of human beings, especially in the nervous system. In view of the lack of data from in vivo studies, this study used the nematode Caenorhabditis elegans (C. elegans), which has become a valuable animal model in nanotoxicological studies due to its multiple advantages, to undertake a bio-safety assessment of N-GQDs in the nervous system with the assistance of a deep learning model. The findings suggested that accumulated N-GQDs in the nematodes’ bodies damaged their normal behavior in a dose- and time-dependent manner, and the impairments of the nervous system were obviously severe when the exposure dosages were above 100 μg/mL. When assessing the morphological changes of neurons caused by N-GQDs, a quantitative image-based analysis based on a deep neural network algorithm (YOLACT) was used because traditional image-based analysis is labor-intensive and limited to qualitative evaluation. The quantitative results indicated that N-GQDs damaged dopaminergic and glutamatergic neurons, which are involved in the neurotoxic effects of N-GQDs in the nematode C. elegans. This study not only suggests a fast and economic C. elegans model to undertake the risk assessment of nanomaterials in the nervous system, but also provides a valuable deep learning approach to quantitatively track subtle morphological changes of neurons at an unbiased level in a nanotoxicological study using C. elegans.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Supporting Program of Southeast University Zhishan Young Scholar

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3