Subtractive Low-Temperature Preparation Route for Porous SiO2 Used for the Catalyst-Assisted Growth of ZnO Field Emitters

Author:

Haugg Stefanie,Hedrich Carina,Blick Robert H.,Zierold RobertORCID

Abstract

The possibility to gradually increase the porosity of thin films facilitates a variety of applications, such as anti-reflective coatings, diffusion membranes, and the herein investigated tailored nanostructuring of a substrate for subsequent self-assembly processes. A low-temperature (<160 °C) preparation route for porous silicon oxide (porSiO2) thin films with porosities of about 60% and effective refractive indices down to 1.20 is tailored for bulk as well as free-standing membranes. Subsequently, both substrate types are successfully employed for the catalyst-assisted growth of nanowire-like zinc oxide (ZnO) field emitters by metal organic chemical vapor deposition. ZnO nanowires can be grown with a large aspect ratio and exhibit a good thermal and chemical stability, which makes them excellent candidates for field emitter arrays. We present a method that allows for the direct synthesis of nanowire-like ZnO field emitters on free-standing membranes using a porSiO2 template. Besides the application of porSiO2 for the catalyst-assisted growth of nanostructures and their use as field emission devices, the herein presented general synthesis route for the preparation of low refractive index films on other than bulk substrates—such as on free-standing, ultra-thin membranes—may pave the way for the employment of porSiO2 in micro-electro-mechanical systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3