Liquid Metal-Based Devices: Material Properties, Fabrication and Functionalities

Author:

Dong JianORCID,Zhu Yuanyuan,Liu Zhifu,Wang Meng

Abstract

This paper reviews the material properties, fabrication and functionalities of liquid metal-based devices. In modern wireless communication technology, adaptability and versatility have become attractive features of any communication device. Compared with traditional conductors such as copper, the flow characteristics and lack of elastic limit of conductive fluids make them ideal alternatives for applications such as flexible circuits, soft electronic devices, wearable stretch sensors, and reconfigurable antennas. These fluid properties also allow for innovative manufacturing techniques such as 3-D printing, injecting or spraying conductive fluids on rigid/flexible substrates. Compared with traditional high-frequency switching methods, liquid metal (LM) can easily use micropumps or an electrochemically controlled capillary method to achieve reconfigurability of the device. The movement of LM over a large physical dimension enhances the reconfigurable state of the antenna, without depending on nonlinear materials or mechanisms. When LM is applied to wearable devices and sensors such as electronic skins (e-skins) and strain sensors, it consistently exhibits mechanical fatigue resistance and can maintain good electrical stability under a certain degree of stretching. When LM is used in microwave devices and paired with elastic linings such as polydimethylsiloxane (PDMS), the shape and size of the devices can be changed according to actual needs to meet the requirements of flexibility and a multistate frequency band. In this work, we discuss the material properties, fabrication and functionalities of LM.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3