Kinetics of Silver Accumulation in Tissues of Laboratory Mice after Long-Term Oral Administration of Silver Nanoparticles

Author:

Antsiferova Anna A.ORCID,Kopaeva Marina Yu.ORCID,Kochkin Vyacheslav N.,Kashkarov Pavel K.

Abstract

Since ancient times, silver has been known for its pronounced bactericidal, antiviral and fungicidal properties. Currently, nanoparticles of this metal are widely used in the food, light and pharmaceutical industries, as well as in medicine. Silver in any form can have a toxic effect not only on pathogens, but also on healthy cells. The biological activity and bioavailability of silver preparations depend on the degree of their solubility in water. In addition, the maximum permissible concentration of soluble forms of silver is an order of magnitude lower than that of insoluble forms. This makes nanoparticles of silver with a hydrophilic coating that form stable colloidal solutions in aqueous media potentially unsafe objects. In this work, we studied the kinetics of the accumulation of silver nanoparticles with an average size of 34 ± 5 nm stabilized with polyvinylpyrrolidone in the organs of laboratory C57Bl/6 mice. The administration of nanoparticles was carried out orally for 30, 60, 120 and 180 days at the dose of 50 µg/day/animal. All the mice developed and gained weight normally during the experiment. No adverse effects were observed. Determination of the silver content in biological tissues of mammals was accomplished by neutron activation analysis. The masses and concentrations of silver in the brain and its different sections (hippocampus, cerebellum, cortex and remnants), as well as in the lungs, testes, liver, blood, kidneys, spleen and heart, were determined. The injection times at which the accumulation curves reached saturation were established. An extremely high accumulation of silver in the testes was shown at 120 days of administration, and a significant accumulation of silver in the lungs and brain was observed. The accumulation of silver in all parts of the brain except the cortex was significant, and its trend was similar to that in the whole brain.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3