Author:
Lan Jun,Yang Yong,Hu Song
Abstract
The application of moth-eye nanostructured polymer film on the flexible polyethylene terephthalate (PET) substrate is an effective way to improve its antireflection (AR) performance. However, many factors affect the AR properties of the moth-eye structure in the actual manufacturing process. Moreover, the antireflection research based on PET substrate has been relatively lacking compared with the silicon substrate. In this paper, we simulate and analyze the AR performance of the moth-eye nanostructured polymer film on PET substrate by using the finite-difference time-domain method within the wavelength range of 400–1100 nm. Simulation results show that the parabola-shaped moth-eye structure (PSMS) can suppress the Fresnel reflection significantly. Moreover, the height and filling ratios are the dominant factors that affect the AR performance of PSMS. Additionally, the base diameter, residual layer thickness, and the refractive index of PSMS polymer film also affect the reflectivity of PET slightly. As a result, an optimal PSMS with base diameter of 400 nm, height of 300 nm, and the hexagonal close-packed arrangement is appropriate, and the solar-weighted reflectivity of PET can be suppressed to 0.21%, which shows a prominent advantage over the bare PET (≈6%). Therefore, this research has promising potential for improving the optical performance of optoelectronic devices by using nanostructured polymer materials.
Funder
Science and Technology Department of Sichuan Province
Subject
General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献