Monitoring the Whole Cycle Length Change of Cement Mortar Incorporated with SRA by CMOS Image Sensor

Author:

Wu Hao,Yao Yan,Wang Ling,Gao Ruijun,Lu ShuangORCID

Abstract

This paper introduces a new method to measure whole cycle length change non-destructively and continuously using a digital image analysis system. The macroscale length changes of mortars containing different shrinkage-reducing admixture (SRA) dosages (0%, 1%, 2% and 5% by cement weight) were first determined using a complementary metal oxide semiconductor (CMOS) image sensor under alternating dry and wet curing conditions. After that, the length change was calculated using developed digital image processing technology (DIPT) software. After that, several significant conclusions could be drawn by combining with the results of systematic tests of the macroscopic and microscale physical properties of the cement mortar using X-ray diffraction, scanning electron microscopy, mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) methods. The test results indicated that SRAs exhibited significant effects on the shrinkage inhibition of cement mortars, whereas the shrinkage reduction behaviour was also affected by varying the curing conditions. The MIP and NMR analyses demonstrated that SRAs reduced the irreversible shrinkage of the cement mortars by decreasing the volume percentage of the 3–50 nm pores and promoting the conversion of calcium silicate hydrate gel from an oligomeric to a high polymerization state thereby improving the volume stability of cement mortars.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3