Granular Elastic Network Regression with Stochastic Gradient Descent

Author:

He Linjie,Chen Yumin,Zhong Caiming,Wu Keshou

Abstract

Linear regression is the use of linear functions to model the relationship between a dependent variable and one or more independent variables. Linear regression models have been widely used in various fields such as finance, industry, and medicine. To address the problem that the traditional linear regression model is difficult to handle uncertain data, we propose a granule-based elastic network regression model. First we construct granules and granular vectors by granulation methods. Then, we define multiple granular operation rules so that the model can effectively handle uncertain data. Further, the granular norm and the granular vector norm are defined to design the granular loss function and construct the granular elastic network regression model. After that, we conduct the derivative of the granular loss function and design the granular elastic network gradient descent optimization algorithm. Finally, we performed experiments on the UCI datasets to verify the validity of the granular elasticity network. We found that the granular elasticity network has the advantage of good fit compared with the traditional linear regression model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Fuzzy sets and information granularity;Zadeh;Adv. Fuzzy Set Theory Appl.,1979

2. Granularity;Hobbs;Proceedings of the IJCAI,1985

3. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic

4. Data Mining: Granular Computing Approach;Lin;Lect. Notes Comput. Sci.,1999

5. Special issue on granular computing and data mining

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3