Efficient Reversible Data Hiding Based on Connected Component Construction and Prediction Error Adjustment

Author:

Zhou LimengnanORCID,Zhang Chongfu,Malik AsadORCID,Wu HanzhouORCID

Abstract

To achieve a good trade-off between the data-embedding payload and the data-embedding distortion, mainstream reversible data hiding (RDH) algorithms perform data embedding on a well-built prediction error histogram. This requires us to design a good predictor to determine the prediction errors of cover elements and find a good strategy to construct an ordered prediction error sequence to be embedded. However, many existing RDH algorithms use a fixed predictor throughout the prediction process, which does not take into account the statistical characteristics of local context. Moreover, during the construction of the prediction error sequence, these algorithms ignore the fact that adjacent cover elements may have the identical priority of data embedding. As a result, there is still room for improving the payload-distortion performance. Motivated by this insight, in this article, we propose a new content prediction and selection strategy for efficient RDH in digital images to provide better payload-distortion performance. The core idea is to construct multiple connected components for a given cover image so that the prediction errors of the cover pixels within a connected component are close to each other. Accordingly, the most suitable connected components can be preferentially used for data embedding. Moreover, the prediction errors of the cover pixels are adaptively adjusted according to their local context, allowing a relatively sharp prediction error histogram to be constructed. Experimental results validate that the proposed method is significantly superior to some advanced works regarding payload-distortion performance, demonstrating the practicality of our method.

Funder

National Natural Science Foundation of China

Shanghai “Chen Guang” Project

National Key Research and Development Program of China

Science and Technology Foundation of Guangdong Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ensemble Learning Approach for Reversible Data Hiding in Encrypted Images with Fibonacci Transform;Electronics;2023-01-15

2. Reversible Data Hiding in Encrypted Text Using Paillier Cryptosystem;2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3