Blockchain and Double Auction-Based Trustful EVs Energy Trading Scheme for Optimum Pricing

Author:

Kakkar RiyaORCID,Gupta RajeshORCID,Agrawal SmitaORCID,Bhattacharya PronayaORCID,Tanwar SudeepORCID,Raboaca Maria SimonaORCID,Alqahtani FayezORCID,Tolba AmrORCID

Abstract

Electric vehicles (EVs) have gained prominence in smart transportation due to their unparalleled benefits of reduced carbon footprints, improved performance, and intelligent energy trading mechanisms. These potential benefits have increased EV adoption at massive scales, but energy management in EVs is a critical study problem. The problem is further intensified due to the scarcity of charging stations (CSs) in near EV proximity. Moreover, as energy transactions occur over open channels, it presents critical security, privacy, and trust issues among decentralized channels. To address the open limitations of trusted energy management and optimize the pricing control among EV entities (i.e., prosumers and consumers), the paper proposes a scheme that integrates blockchain and a truthful double auction strategy for trustful EV trading. To address the transaction scalability, we integrate an Interplanetary File System (IPFS) with a double auction mechanism handled through the Remix Smart Contract environment. The double auction leverages an optimal payoff condition between peer EVs. To address the communication latency, we present the scheme at the backdrop of Fifth Generation (5G) networks that minimizes the optimal payoff response time. The scheme is simulated against parameters such as convergence, profit for consumers, computation time, and blockchain analysis regarding node commit latency, collusion attacks, and EV energy consumption. The results indicate the scheme’s viability against traditional (non-blockchain) approaches with high reliability, scalability, and improved cost-efficiency.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3