End-to-End Deep Learning Architectures Using 3D Neuroimaging Biomarkers for Early Alzheimer’s Diagnosis

Author:

Agarwal DeevyankarORCID,Berbis Manuel AlvaroORCID,Martín-Noguerol Teodoro,Luna AntonioORCID,Garcia Sara Carmen Parrado,de la Torre-Díez IsabelORCID

Abstract

This study uses magnetic resonance imaging (MRI) data to propose end-to-end learning implementing volumetric convolutional neural network (CNN) models for two binary classification tasks: Alzheimer’s disease (AD) vs. cognitively normal (CN) and stable mild cognitive impairment (sMCI) vs. AD. The baseline MP-RAGE T1 MR images of 245 AD patients and 229 with sMCI were obtained from the ADNI dataset, whereas 245 T1 MR images of CN people were obtained from the IXI dataset. All of the images were preprocessed in four steps: N4 bias field correction, denoising, brain extraction, and registration. End-to-end-learning-based deep CNNs were used to discern between different phases of AD. Eight CNN-based architectures were implemented and assessed. The DenseNet264 excelled in both types of classification, with 82.5% accuracy and 87.63% AUC for training and 81.03% accuracy for testing relating to the sMCI vs. AD and 100% accuracy and 100% AUC for training and 99.56% accuracy for testing relating to the AD vs. CN. Deep learning approaches based on CNN and end-to-end learning offer a strong tool for examining minute but complex properties in MR images which could aid in the early detection and prediction of Alzheimer’s disease in clinical settings.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference121 articles.

1. World Alzheimer Report 2018;Patterson,2018

2. Amyloid, the presenilins and Alzheimer's disease

3. Alzheimer’s Disease Facts and Figures. Alzheimer’s Disease and Dementia https://www.alz.org/alzheimers-dementia/facts-figures

4. Automatic classification of MR scans in Alzheimer's disease

5. Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3