Abstract
In this paper, we investigate the constrained optimal control problem of nonlinear multi-input safety-critical systems with uncertain disturbances and time-varying safety constraints. By utilizing a barrier function transformation, together with a new disturbance-related term and a smooth safety boundary function, a nominal system-dependent multi-input barrier transformation architecture is developed to deal with the time-varying safety constraints and uncertain disturbances. Based on the obtained transformation system, the coupled Hamilton–Jacobi–Bellman (HJB) function is established to obtain the constrained Nash equilibrium solution. In addition, due to the fact that it is difficult to solve the HJB function directly, the single critic neural network (NN) is constructed to approximate the optimal performance index function of different control inputs, respectively. It is proved theoretically that, under the influence of uncertain disturbances and time-varying safety constraints, the system states and neural network parameters can be uniformly ultimately bounded (UUB) by the proposed neural network approximation method. Finally, the effectiveness of the proposed method is verified by two nonlinear simulation examples.
Funder
National Natural Science Foundation of China
Science and Technology Research Project of the Henan Province
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献