Comprehensive Identification of Surface Subsidence Evaluation Grades of Mines in Southwest China

Author:

Li LiORCID,Kong Dezhong,Liu Qinzhi,Xiong YuORCID,Chen Fei,Zhang Haibing,Chu Yunyun

Abstract

Due to their complex geological structure, it is difficult to systematically analyze the surface subsidence of coal mines in southwest China, and the factors that cause surface subsidence are also different from other coal mines. Focusing on the problem of surface subsidence caused by mining in southwest China’s mines, a grade evaluation system for surface subsidence of southwest mines is constructed based on the analytic hierarchy process, and ten evaluation indicators are established from the perspectives of mining disturbance and geological structure. A matter–element model of surface subsidence based on matter–element extension theory and a cloud model of surface subsidence based on cloud theory are then constructed. A coal mine in Anshun, Guizhou, is taken as an example to calculate the evaluation level of surface subsidence and thus verify the scientificity of extension theory and cloud theory. The results show that the main factors that affect the surface subsidence of southwest mines are the number of coal seam layers, mining height and comprehensive Platt hardness of rock, similar to that of northern plain coal mines. Surface slope and subsidence area are also very important. The comprehensive correlation degree of each grade of the coal mine is −0.29836, 0.192232, −0.1093 and −0.46531, and the coal mine is concluded to be in grade 2. The calculated similarity of the overall index evaluation cloud map of the coal mine and each grade is 0, 0.3453, 0.7872 and 0, respectively. The coal mine is in grade 2, which is a relatively safe state. Consistent with the calculation results of the extension model and in line with the field situation, the extension matter–element model and cloud model built in this paper can verify each other and have a certain scientificity.

Funder

the National Natural Science Foundation of China Regional Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3