Abstract
Power quality has emerged as a sincere denominator in the planning and operation of a power system. Various events affect the quality of power at the distribution end of the system. Detection of these events has been a major thrust area in the last decade. This paper presents the application of Support Vector Machine (SVM) in classifying the power quality events. Well-known signal processing techniques, namely Hilbert transform and Wavelet transform, are employed to extract the potential features from the observation sets of voltages. Supervised architecture consisting of SVM has been constructed by tuning the parameters of SVM by various algorithms. It has been observed that Augmented Crow Search Algorithm (ACSA) yields the best accuracy compared to other contemporary optimizers. Further, Principal Component Analysis (PCA) is employed to choose the most significant features from the available features. On the basis of PCA, three different models of tuned SVMs are constructed. Comparative analysis of these three models, along with recently published approaches, is exhibited. Results are validated by the statistical one-way analysis of variance (ANOVA) method. It is observed that SVM, which contains attributes from both signal-processing techniques, gives satisfactory results.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献