A Feature Selection Based on Improved Artificial Hummingbird Algorithm Using Random Opposition-Based Learning for Solving Waste Classification Problem

Author:

Ali Mona A. S.ORCID,P. P. Fathimathul RajeenaORCID,Salama Abd Elminaam DiaaORCID

Abstract

Recycling tasks are the most effective method for reducing waste generation, protecting the environment, and boosting the overall national economy. The productivity and effectiveness of the recycling process are strongly dependent on the cleanliness and precision of processed primary sources. However, recycling operations are often labor intensive, and computer vision and deep learning (DL) techniques aid in automatically detecting and classifying trash types during recycling chores. Due to the dimensional challenge posed by pre-trained CNN networks, the scientific community has developed numerous techniques inspired by biology, swarm intelligence theory, physics, and mathematical rules. This research applies a new meta-heuristic algorithm called the artificial hummingbird algorithm (AHA) to solving the waste classification problem based on feature selection. However, the performance of the AHA is barely satisfactory; it may be stuck in optimal local regions or have a slow convergence. To overcome these limitations, this paper develops two improved versions of the AHA called the AHA-ROBL and the AHA-OBL. These two versions enhance the exploitation stage by using random opposition-based learning (ROBL) and opposition-based learning (OBL) to prevent local optima and accelerate the convergence. The main purpose of this paper is to apply the AHA-ROBL and AHA-OBL to select the relevant deep features provided by two pre-trained models of CNN (VGG19 & ResNet20) to recognize a waste classification. The TrashNet dataset is used to verify the performance of the two proposed approaches (the AHA-ROBL and AHA-OBL). The effectiveness of the suggested methods (the AHA-ROBL and AHA-OBL) is compared with that of 12 modern and competitive optimizers, namely the artificial hummingbird algorithm (AHA), Harris hawks optimizer (HHO), Salp swarm algorithm (SSA), aquila optimizer (AO), Henry gas solubility optimizer (HGSO), particle swarm optimizer (PSO), grey wolf optimizer (GWO), Archimedes optimization algorithm (AOA), manta ray foraging optimizer (MRFO), sine cosine algorithm (SCA), marine predators algorithm (MPA), and rescue optimization algorithm (SAR). A fair evaluation of the proposed algorithms’ performance is achieved using the same dataset. The performance analysis of the two proposed algorithms is applied in terms of different measures. The experimental results confirm the two proposed algorithms’ superiority over other comparative algorithms. The AHA-ROBL and AHA-OBL produce the optimal number of selected features with the highest degree of precision.

Funder

King Faisal University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference137 articles.

1. Producción, uso y destino de todos los plásticos jamás fabricados;Geyer;Sci. Adv.,2017

2. Challenges and opportunities associated with waste management in India

3. RecycleNet: Intelligent waste sorting using deep neural networks;Bircanoğlu;Proceedings of the 2018 Innovations in Intelligent Systems and Applications (INISTA),2018

4. Environmental pollution as a threats to the ecology and development in Guinea Conakry

5. Wood dust application for improvment of selected properties of thermoplastic starch. Inmateh;Zelazinski;Agric. Eng,2019

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3