Higher-Order Asymptotic Numerical Solutions for Singularly Perturbed Problems with Variable Coefficients

Author:

Liu Chein-ShanORCID,El-Zahar Essam R.ORCID,Chang Chih-WenORCID

Abstract

For the purpose of solving a second-order singularly perturbed problem (SPP) with variable coefficients, a mth-order asymptotic-numerical method was developed, which decomposes the solutions into two independent sub-problems: a reduced first-order linear problem with a left-end boundary condition; and a linear second-order problem with the boundary conditions given at two ends. These are coupled through a left-end boundary condition. Traditionally, the asymptotic solution within the boundary layer is carried out in the stretched coordinates by either analytic or numerical method. The present paper executes the mth-order asymptotic series solution in terms of the original coordinates. After introducing 2(m+1) new variables, the outer and inner problems are transformed together to a set of 3(m+1) first-order initial value problems with the given zero initial conditions; then, the Runge–Kutta method is applied to integrate the differential equations to determine the 2(m+1) unknown terminal values of the new variables until they are convergent. The asymptotic-numerical solution exactly satisfies the boundary conditions, which are different from the conventional asymptotic solution. Several examples demonstrated that the newly proposed method can achieve a better asymptotic solution. For all values of the perturbing parameter, the method not only preserves the inherent asymptotic property within the boundary layer but also improves the accuracy of the solution in the entire domain. We derive the sufficient conditions, which terminate the series of asymptotic solutions for inner and outer problems of the SPP without having the spring term. For a specific case, we can derive a closed-form asymptotic solution, which is also the exact solution of the considered SPP.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3