An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism

Author:

Xu Nannan,Cui Xinze,Wang Xin,Zhang WeiORCID,Zhao TianyuORCID

Abstract

In different kinds of sports, the balance control ability plays an important role for every athlete. Therefore, coaches and athletes need accurate and efficient assessments of the balance control ability to improve the athletes’ training performance scientifically. With the fast growth of sport technology and training devices, intelligent and automatic assessment methods have been in high demand in the past years. This paper proposes a deep-learning-based method for a balance control ability assessment involving an analysis of the time-series signals from the athletes. The proposed method directly processes the raw data and provides the assessment results, with an end-to-end structure. This straight-forward structure facilitates its practical application. A deep learning model is employed to explore the target features with a multi-headed self-attention mechanism, which is a new approach to sports assessments. In the experiments, the real athletes’ balance control ability assessment data are utilized for the validation of the proposed method. Through comparisons with different existing methods, the accuracy rate of the proposed method is shown to be more than 95% for all four tasks, which is higher than the other compared methods for tasks containing more than one athlete of each level. The results show that the proposed method works effectively and efficiently in real scenarios for athlete balance control ability evaluations. However, reducing the proposed method’s calculation costs is an important task for future studies.

Funder

key R&D plan of China for Winter Olympics

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Residual Connection Based Deep Neural Network for Evaluation of Athlete Competitive Ability;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

2. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks;BMC Genomics;2024-01-22

3. The Application and Impact of Artificial Intelligence on Sports Performance Improvement: A Systematic Literature Review;2023 4th International Conference on Communications, Information, Electronic and Energy Systems (CIEES);2023-11-23

4. Applied Computing and Artificial Intelligence;Mathematics;2023-05-15

5. Study on the Difference of Human Body Balance Stability Regulation Characteristics by Time-Frequency and Time-Domain Data Processing Methods;International Journal of Environmental Research and Public Health;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3